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Abstract

Purpose—Home sleep testing devices are being widely used in diagnosis/screening for 

obstructive sleep apnea (OSA). We examined differences in OSA metrics obtained from two 

devices with divergent home monitoring strategies; the Apnea Risk Evaluation System (ARES™, 

multiple signals plus forehead reflectance oximetry) and the Nonin WristOx2™ (single channel 

finger transmission pulse oximeter), compared to differences from night-night variability of OSA.

Methods—152 male / 26 female subjects (BMI=30.3±5.6 kg/m2, age=52.5±8.9 yrs) were 

recruited without regard to OSA symptoms, and simultaneously wore both ARES™ and Nonin 

WristOx2™ for 2 nights (n=351 nights). Automated analysis of the WristOx2 yielded ODIOx2 

(Oxygen Desaturation Index, #≥4% O2 dips/hr) and automated analysis with manual editing of 

ARES™ yielded AHI4ARES (apneas+hypopneas with ≥4% O2 dips/hr) and RDIARES (apneas+ 

hypopneas with ≥4% O2 dips/hr or arousal surrogates). Baseline awake oxygen saturation, percent 

time <90% O2 saturation (% time <90% O2Sat) and O2 signal loss were compared between the 

two methods.
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Results—Correlation between AHI4ARES and ODIOx2 was high (ICC=0.9, 95% CI=0.87–0.92, 

p<0.001, bias±SD=0.7±6.1 events/hr). Agreement values for OSA diagnosis (77–85%) between 

devices was similar to that seen from night-to-night variability of OSA using a single device. 

Awake baseline O2 saturation was significantly higher in the ARES™ (96.2±1.6%) than 

WristOx2™ (92.2±2.1%, p<0.01). There was a significantly lower %time<90% O2Sat reported by 

the ARES™ compared to WristOx2 (median (IQR) 0.5(0.0, 2.6) vs 2.1(0.3, 9.7), p<0.001) and the 

correlation was low (ICC=0.2).

Conclusions—OSA severity metrics predominantly dependent on change in oxygen saturation 

and metrics used in diagnosis of OSA (AHI4 and ODI) correlated well across devices tested. 

However differences in cumulative oxygen desaturation measures (i.e.% time<90% O2Sat) 

between the devices suggest caution is needed when interpreting this metric particularly in 

populations likely to have significant hypoxia.
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Introduction

Diagnosis of obstructive sleep apnea (OSA) is increasingly being made with limited channel 

monitoring (level III and IV devices) in both clinical and epidemiological settings. However, 

the devices being used vary from single channel oximeters to devices that monitor multiple 

signals such as airflow, breathing efforts, oxygen saturation and surrogates for arousal. 

When disease is moderate to severe, both Level IV and Level III devices have been shown to 

have value in screening as well as in establishing the diagnosis of OSA [1, 2]. The American 

Academy of Sleep Medicine (AASM) has suggested only level III devices should be used to 

obtain OSA severity indices comparable to that obtained with full polysomnography (PSG) 

[3–7]. However as noted by the recent AASM guidelines document for diagnostic testing for 

OSA [8], there are limited data in the literature assessing the impact of the number of 

parameters or technologies being used, particularly in different clinical settings. We were 

interested in assessing the impact of using maximally different diagnostic devices on 

derivation of indices of OSA severity and the agreement between devices for OSA 

diagnosis.

One potentially important difference between devices is the technology used for oximetry as 

well as the measurement site which may lead to true physiologic differences in oxygen 

saturation. Pulse oximetry can be measured using either transmission or reflectance 

techniques. Transmission oximetry detects light after it passes through relatively translucent 

placement sites, such as the fingertips or earlobes, whereas reflectance oximetry detects 

reflected light from tissue that is opaque (eg. forehead sensors). There are known differences 

in the measurement of oxygen saturation (O2Sat) using these two methods [9], but, even by 
a single technique, we and others have shown a significant effect of pulse oximeter brand 

and sample averaging duration on OSA diagnosis [10–12]. No study has specifically 

addressed the impact on OSA diagnosis of using reflectance vs transmission oximetry 

technique with currently used devices.
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Additionally, identifying sleep related respiratory events (apneas /hypopneas) using only 

their consequences (eg O2 desaturation) may differ from detecting events as by reduction in 

airflow and assessing their significance from the oximetry signal. Finally, some devices also 

use surrogates for EEG arousal and use these to maximize similarity to polysomnography 

detection of hypopnea. Given all these differences the purpose of the present study was to 

compare the effect on diagnosis of OSA using two devices that are maximally different in 

their approach to measure OSA severity. The present study compares data from a widely 

used stand-alone level IV device the Nonin WristOx2™ (Model 3150, Plymouth, MN) and a 

level III device , the Apnea Risk Evaluation System (ARES™, Watermark Medical, Boca 

Raton, FL) that uses reflectance oximetry combined with other signals (Fig 1). We have 

previously shown that the ARES™ has good agreement and adequate sensitivity and 

specificity with in-laboratory polysomnography for diagnosis of OSA [4]. For the present 

study, we compared these devices in a non-sleep clinic population which, in contrast to sleep 

clinic populations, does not have the high pre-test probability of OSA. Specifically, we 

compared (i) the amount of data loss with each device and type of oximetry; (ii) baseline 

awake O2 saturation and %time below 90% O2 saturation and (iii) agreement between the 

values of OSA severity, and agreement for diagnosis of OSA from these devices, compared 

to the physiologic night-to-night variability of these metrics. We hypothesized that there 

would be significant differences in sleep disordered breathing (SDB) indices and diagnostic 

agreement for OSA when using finger pulse oximetry alone versus a device that measures 

multiple parameters including airflow, forehead oxygen saturation and surrogates for the 

EEG arousal.

Methods

Data from the first 178 subjects who enrolled in an ongoing study in the World Trade Center 

Responder population (Clinical trials # NCT01753999) were analyzed. The parent study 

collects exclusively ambulatory overnight home studies to evaluate the relationship between 

new onset OSA following the WTC disaster on 9/11/2001 and nasal pathology. Subjects 

were recruited without regard to OSA symptoms, but were not eligible if prior to 9/11/2001 

they had documented evidence of OSA or significant snoring or if they were currently on 

treatment for OSA. For the present substudy, subjects were instructed to wear the 

WristOx2™, and ARES™ simultaneously for 2 consecutive nights. Both devices were 

initialized on the same computer to synchronize the internal clocks. Devices were given to 

the patients during an in person visit. A research coordinator provided verbal instructions 

that took <5 minutes and a 1 page pamphlet with written instructions was also provided to 

the subjects. No additional interaction with the patient was required. Both devices are easy 

to self-apply and we have used the ARES™ successfully with just the written instructions in 

previous studies [4]. The ARES™ measures oximetry on the forehead, and the subjects wore 

the WristOx2™ on whichever hand they were more comfortable. Data were excluded from 

analysis if both devices were not used on the same night or if the duration of recording on 

either device was less than 2 hours (tabulated as data loss).

WristOx2™: Oximetry by transmission was sampled at 1 Hz with an averaging time of 4 

beats. Automated analysis of the WristOx2 data, using Nonin nVision data management 

software version 6.3, provided an index of OSA severity, the oxygen desaturation index 
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(ODIox2) and % time below 90% O2 saturation (%time<90%O2Sat) for each night. ODIOx2 

was defined as the number of drops in saturation by at least 4% lasting a minimum of 10 

seconds per hour of valid recording time as defined by the Nonin software. We inferred the 

awake baseline O2 saturation from a period at the beginning of the study within the first 10 

minutes from the start of the recording. Poor signal quality was identified and excluded in 

the oximetry data using the automated algorithm on the WristOx2. The signal was manually 

inspected to ensure validity of the algorithm and no further editing was required.

ARES™: Oximetry by reflectance was sampled at 100 Hz with an averaging time of 3–5 

beats depending on signal quality, and displayed at 1 Hz. Automated analysis of SDB events 

was followed by manual inspection and editing of events by investigator as per device use 

instructions. ODI is not provided by the ARES™ automated algorithm, so a direct 

comparison of transmittance and reflectance saturation derived SDB was not possible in our 

study. The closest measure to ODI provided by the ARES™ is the AHI4 which counts 

apneas and those hypopneas with a ≥4% desaturation. The Apnea Hypopnea Index 4% from 

ARES™ (AHI4ARES) is calculated as the sum of apneas and hypopneas 4% divided by total 

sleep time (TST); apneas were defined as a reduction in flow amplitude of >90% of baseline, 

hypopneas 4% were defined as a reduction in flow amplitude >30% followed by ≥4% 

oxygen desaturation, or a visible reduction in flow amplitude along with a change in shape 

suggesting inspiratory flow limitation (IFL) followed by ≥4% oxygen desaturation. The 

ARES™ provides an estimate of total sleep time obtained from a combination of actigraphy 

and automated analysis of single channel forehead EEG recording [13].

The ARES™ also provides a Respiratory Disturbance Index (RDIARES): sum of apneas, 

hypopneas 4% and hypopneaArousal divided by TST; hypopneaArousal was defined by a 

visible reduction (usually >30%) in flow amplitude along with a change in shape suggesting 

inspiratory flow limitation and followed by arousal surrogates that included an abrupt 

change in head position or an increase in flow amplitude to >2 times the amplitude during 

the event along with a normalization of shape.

For ARES™oximetry data, automated algorithms were first applied to exclude areas with 

poor quality oximetry. This was followed by additional manual editing to exclude areas with 

sustained drops in O2 saturation following body position changes but not associated with 

SDB events.

For normally distributed variables data are presented as mean±SD and groups compared 

using paired t-test. Data are presented as median (IQR) and Wilcoxon Rank Sum tests were 

used to compare groups when data was not normally distributed. Concordance of SDB 

indices was assessed by performing Intraclass Correlations (ICC) between ODIOx2 and 

AHI4ARES, and both devices’ baseline O2 saturation level and %time<90%O2Sat [14]. 

Bland Altman plots were used to measure bias and differences between these measures and 

Pearson correlation coefficients ( r) were used to assess relationships between other related 

variables [15]. Agreement, sensitivity and specificity for diagnosis of OSA were examined 

using standard cutoffs for OSA (i.e.≥5/hr,>15/hr). Analyses were performed between 

devices using all nights in all subjects and between pairs of data for comparisons across 

nights using the same device.
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Results

351 nights of data were analyzed from 178 subjects (85.3% Male, 14.6% Female, 

BMI=30.3±5.6 kg/m2, age=52.5±8.9 years, Epworth Sleepiness Scale (ESS)=8.5±5, 37% 

with ESS>10). The reported prevalence of congestive heart failure= 2.3%; hypertension 

=25%; stroke=0.6%; MI=2%; diabetes=10%; gastro-esophageal reflux disease=40%, 

chronic-rhinosinusitis=42% and mental-health conditions (depression, post traumatic stress 

disorder, panic disorder)=15%. 8% were current smokers. The prevalence of OSA in this 

dataset was 28% using a cutoff AHI4≥15/hr (data from multiple nights collected for each 

subject combined) and 62% for AHI4≥5/hr. The prevalence values were 10% and 22% when 

the coexistence of excessive daytime somnolence (ESS>10) was included in the definition of 

OSA.

Majority of the subjects (73%) used both devices simultaneously for 2 nights, 4% for three 

nights and the remaining 23% of subjects used both devices for only one night. 11.7% 

(n=41/351 nights) of data were excluded for having <2hrs of data on either device (10.8% 

Wrist Ox2; 2.3% ARES™) leaving 310 nights with simultaneous ARES™ and Wrist Ox2 

data, and 130 studies with 2 nights of data with each of the devices.

Comparison between Devices

The average duration of data recorded was 5.8±1.5 hours/night on the ARES™ and 6.2±1.8 

hours/night on the WristOx2™. Over the 310 nights analyzed, there was a significantly 

greater percentage of time with poor quality O2 saturation on the ARES™ device compared 

to the WristOx2™ (median (IQR) 8.9% (3.6, 20.3) vs. 0.7% (0.2, 1.4), p<0.01; See Table 1). 

Figure 2 shows the histogram of % time with poor quality O2 saturation for each device. 

There was no correlation between the amount of data loss that occurred on the two devices 

(r=0.1, p=NS), suggesting this was a device-determined, and not patient-specific finding. In 

addition, when we identified the individual subjects with the most data loss (top 5%) for 

each device, there was no overlap between individuals who showed large data loss with the 

ARES™ or WristOX2™.

Table 1 shows significant differences in reported %time<90%O2Sat between the ARES™ 

and WristOx2 devices. Figure 3 shows the poor correlation in this metric between the 

devices, and that the ARES™ reported less %time<90%O2Sat, especially when higher 

levels of percent time below 90% were measured by the WristOx2. Only 213 nights (60.7%) 

had <5% difference in the %time<90%O2Sat recorded by the two devices. Baseline awake 

O2Sat was significantly higher with the ARES™ than the WristOX2™ (Table 1). The 

correlation between the baseline awake O2Sat values from the two devices was poor and did 

not reach statistical significance (r=0.1, p=0.08).

BMI was correlated with the %time<90%O2Sat in both the ARES™ (r= 0.3, p<0.01) and 

the WristOx2™ (r=0.4, p<0.01). BMI also correlated with the difference in 

%time<90%O2Sat between the two devices (r=0.3, p<0.01).

Table 1 shows the SDB indices obtained using the ARES (AHI4ARES, RDIARES) and Wrist 

Ox2 (ODIOx2). Correlation between AHI4ARES and ODIOx2 was high (ICC=0.9, bias
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±SD=0.7±6.1, See Figure 4). A small bias was observed with AHI4ARES systematically 

slightly higher than ODIOx2 (but with wide limits of agreement). Table 2A shows the % 

agreement for diagnosing OSA, the associated kappa and sensitivity, specificity and false 

negative rates using cutoffs of ≥5/hr ≥15 events/hour with ARES™ as the gold standard. If 

sleepiness was required for the definition of OSA, the agreement rate was unchanged when a 

cutoff of ≥5/hr was used and slightly improved at 93% when a cutoff of ≥15/hr was used. If 

the more sensitive metric, RDIARES (with a cutoff of ≥15/hr), was used for diagnosis of 

OSA 20 (6.4%) additional diagnoses of OSA are identified compared to AHI4≥5/hr and 22 

(7%) additional diagnoses are identified compared to ODI≥5/hr. Table 2B shows agreement 

for OSA diagnosis between N1 vs N2.

Comparison of differences in OSA metrics between devices versus between nights using the 
same device is shown in Table 3. The magnitude of the difference (bias) in the indices (AHI/

ODI) between night 1 (N1) and night 2 (N2) was not statistically different and consistent 

with data in the literature with no significant first-night effect [16–19]. This difference in 

AHI4/ODI seen when the same device is used on 2 separate nights was of similar magnitude 

as the (absolute) difference in the same index between the two different devices when used 

simultaneously. There were small differences in %time<90%O2Sat and baseline awake 

O2Sat between N1 and N2 consistent with the stated accuracy of the devices. The difference 

in the %time<90% and awake O2Sat between nights (using the same device) was of lower 

magnitude than differences between the 2 devices used simultaneously on the same night.

Discussion

This is the first study to our knowledge that examines the differences in SDB metrics 

obtained from divergent home monitoring strategies, using different types of oximetry and 

contrasting a Level III forehead device and a Level IV finger device. As both the ARES™ 

and WristOx2™ devices are widely used our results have implications for comparing clinical 

and epidemiological datasets. In the simultaneously recorded home data of this large dataset 

of non-sleep clinic subjects, there were significant differences in the baseline awake O2Sat 

and %time<90%O2Sat obtained from the two devices. Despite this, the correlation between 

ODIOx2 and AHI4ARES was high. Agreement and rate of false negatives identified for 

diagnosis of OSA were similar to those seen due to night-to-night variability in SDB.

We and others have compared limited channel monitoring devices (level III and IV) and 

shown good sensitivity (80–89%) and specificity (86–94%) for diagnosis of OSA compared 

to full laboratory PSG [1, 2, 20–23]. A recent study compared a level III device (ApneaLink 

Plus, which uses transmittance finger pulse oximetry) and a stand-alone finger pulse 

oximeter (Pulsox 300i) used at home against an in-lab NPSG in a sleep clinic population 

with suspected OSA [24]. This report showed good agreement between indices of OSA that 

required ≥4% oxygen desaturation, calculated from either a single pulse oximetry or multi- 

channel PSG recording. We have also previously found that significant differences occur in 

AHI4 obtained when different brands of finger pulse oximeters were used in the same 

patient [10]: the biases found in AHI4 in that study ranged from 0.3±1.7/hr to 7.1±9.6/hr and 

were in the same order of magnitude for biases in AHI4/ODI (0.7±6.1) seen in the present 

study between finger transmission and forehead reflectance oximetry. These data suggest 

Gumb et al. Page 6

Sleep Breath. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



differences in measurement may be device dependent in addition to varying with the method 

of oximetry used [10].

In contrast to the results for the SDB index, we found significant and systematic device-

dependent differences in the percent time<90%O2Sat. As neither device is the gold standard 

for oxygen saturation and we did not obtain a blood gas, it is impossible to know which of 

the two measures better reflected actual O2 saturation levels. We believe a significant 

contributor to the systematic difference in oximetry observed in our study is the oximeter 

type. However, differences in averaging or sampling rates may have contributed [10]. It is 

also likely that calibration of the oximetry signal will account for differences in percent time 

below 90%; in support of this, our data showed differences in the simultaneously measured 

baseline awake saturation across the two devices. In addition, physiologic O2 saturation may 

be different at the forehead and finger as temperature and blood flow have been shown to 

influence O2 saturation and may differ [25]. The Wrist Ox2™ O2 saturation measurement at 

the beginning of the night was lower than the ARES device, consistent with the overall 

greater percent time<90%O2Sat reported by the Wrist Ox2. In addition, the manual editing 

of the ARES data may have contributed by being more aggressive during periods of low O2 

saturation/poor signal quality. This likely will result in removal of more periods of low O2 

saturation (“poor signal”) with the ARES algorithm than with the fully automated Wrist Ox2 

algorithm. Irrespective of the cause, the significant observed differences in reported 

%time<90%O2Sat suggest care must be taken whenever comparing these data across studies 

using portable monitors with different oximeter types or algorithms.

Although data loss from oximetry was <10% for both devices, the ARES™ device had 

significantly greater data loss than the Wrist Ox2. This may be due to a lower signal to noise 

ratio in forehead reflectance oximetry compared to transmission. Review of oximetry 

tracings suggests that the forehead signal is particularly susceptible to data loss during 

movement (as during position changes) possibly due to positional changes in venous blood 

flow to the forehead. On the other hand, our data showed that in the WristOx2 studies we 

had more nights with insufficient duration of data recorded for analysis (nights with <2 

hours) than in the ARES™ studies. Possible reasons include the more precarious placement 

of the Wrist Ox2 on the fingertip, allowing for the device to fall off the patient more easily 

than with the ARES™, which is secured around the forehead by an elastic strap and a nasal 

cannula.

The impact of the ability to score any SDB events without 4% O2 desaturation (e.g. those 

with arousal surrogates) using the ARES™ is reflected in the additional 20 (6.4%) diagnoses 

that were made when using RDI data from this device. This suggests that mild OSA 

captured by the RDI may be missed by the oximeter alone. Based on our prior work, we 

used a cut-off of ≥15/hr for OSA diagnosis when events with O2 desaturation and/or arousal 
were included in the index (i.e. RDI) as opposed to the AASM guideline cutoff≥5/hr for 

diagnosis of OSA when using an SDB index that includes hypopneas defined by O2 

desaturation alone [26]. We and others have demonstrated the validity of this higher cutoff 

for OSA whenever using the more inclusive definition of RDI [4, 23, 27]. If one is interested 

in more than just the overall SDB and oximetry indices the ARES™ device provides 

additional information, such as sleep position and indirect confirmation of obstruction from 

Gumb et al. Page 7

Sleep Breath. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



snoring and from the shape of the airflow signal (inspiratory flow limitation), but this comes 

at a cost of additional time required for review and manual editing of data. A recent study by 

Chai-Coetzer et al showed excellent agreement of indices for diagnosis for moderate to 

severe OSA of both Level III and Level IV devices compared to PSG. However, this study 

also showed slightly worse functional outcomes when Level IV (oximetry alone) was used 

for OSA management, but similar outcomes between PSG and level III analysis [2]. The 

authors suggested that this was due to reduced physician confidence when using only a 

single channel, which is consistent with our previously published work [28].

Although our population composition was closer to an epidemiologic population (subjects 

were recruited without regard to symptoms of OSA and do not have significant co-morbid 

cardiovascular and metabolic conditions), the majority of our subjects were overweight, 

middle aged men. This likely contributed to the high prevalence of OSA. It remains to be 

tested whether our results can be generalized to a population with comorbid conditions 

showing significant hypoxemia.

Limitations of our study include the lack of a definitive reference measure of oximetry and 

not having comparison to in-laboratory PSG. Also, AHI4 by design includes apneas 

irrespective of any desaturation, and thus differs from the ODI, which only counts ≥4% 

desaturations. It has been estimated at least 20% of apneas may not have accompanying 

desaturation [29]. This may explain why the AHI4ARES was slightly higher than the ODIOx2 

(i.e., due to inclusion of apnea events without desaturation).

Conclusion

In our study population the level IV device (WristOx2) showed good agreement for diagnosis 

of OSA compared to the level III device (ARES™) despite different approaches to signals 

monitored. The disagreement between the devices for the same index and between OSA 

diagnoses based on AHI4≥5/hr and RDI≥15/hr with a single device were comparable to 

night-night variability in our study and reported in previous publications. This suggests 

using oximetry alone with the ODI≥5/hr as a criterion to diagnose OSA may detect OSA 

with a clinically acceptable success in populations composed of middle aged overweight 

males with few comorbidities. Whether the number of patients missed by ODI vs AHI4 or 

RDI will increase above 10% in other populations, such as pediatrics or patients with 

minimally desaturating events, will need to be tested separately in future studies.
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Fig 1. 
ARES™ and Nonin WristOx2 devices
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Fig 2. 
Histograms showing the percentage of time with poor quality O2 saturation in both devices 

on the x-axis and the percentage of nights on the y-axis.
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Fig 3. 
A: Scatterplot of % time<90%O2Sat for WristOX2™ and ARES™ for n=310 nights 

showing significant differences in cumulative O2 desaturation time reported by the devices.

(ICC=0.2, 95%CI=0.14–0.35, p<0.001) B. Bland Altman plot shows bias and limits of 

agreement.
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Fig 4. 
A: Scatterplot of ODIOx2 and AHI4ARES for n=310 nights, showing a good correlation 

(ICC=0.9, 95% CI=0.87–0.92, p<0.001) 4B. Bland Altman plot showing bias and limits of 

agreement.
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Table 1

Average and standard deviation and median (IQR) for pertinent variables from ARES and Wrist Ox2

All Subjects, all nights (n=310)
Mean±SD
Median (IQR)

Ares Wrist Ox2

Duration (hours) 5.8±1.5
5.6(4.4,6.2)

6.2±1.8**

6.4(4.9,7.4)**

AHI4ARES/ODIOx2 12.8±14.1
8.0(3.0,18.0)

12.1±13.3*
7.4(3.4,15.8)

RDIARES 26.0±16.9
21.5(13.8,35.0)

n/a

% Time Below 90% O2Sat 2.6±5.0
0.5 (.0, 2.6)

9.6±17.1**

2.1 (0.3, 9.7)#

Baseline O2Sat (%)(n=295) 96.2±1.6
96.6(95.6,97.2)

92.2±2.1**

92.0(91.0,94.0)#

% Artifact O2Sat 14.6±15.9
8.9(3.6,20.3)

2.1±7.9**

0.7(0.2,1.4)**

*
p<0.05,

**
p<0.01 for comparison between ARES™ and WristOx2

#
P<0.001 Wilcoxon signed rank test
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Table 2A

Agreement, sensitivity and specificity when defining disease using cutoffs: (i) AHI4ARES≥5/hr and ODIOx2≥5; 

(ii) RDIARES≥15/hr and AHI4ARES≥5/hr ; (iii) RDIARES≥15/hr and ODIOx2≥5

Definition for OSA diagnosis Agreement, Kappa Sensitivity Specificity False Negative Rate

Gold Standard ARES

ODIOx2 ≥ vs AHI4ARES≥5 82.5%, 0.62 85.9% 76.5% 14%

AHI4ARES ≥vs RDIARES≥15 84.5%, 0.65 84.5% 84.6% 15.5%

ODIOx2 ≥ vs RDIARES≥15 77.4%, 0.49 79.0% 73.6% 21%
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Table 2B

Agreement, sensitivity and specificity when defining disease using cutoffs: (i) AHI4ARES≥5/hr 

RDIARES≥15/hr and ODIOx2≥5 N1 vs N2, using N1 as the gold standard

Definition for OSA diagnosis Agreement, Kappa Sensitivity Specificity False Negative rate

Gold Standard N1

AHI4ARES ≥ N1 vs N2 73.4%, 0.44 83% 60% 17%

ODIOx2 ≥ N1 vs N2 83.0%, 0.64 88.0% 74.5% 11.4%

RDIARES≥15 N1 vs N2 81.5%, 0.57 92.8% 61% 7%
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Table 3

Comparison of differences between devices and between nights using the same device

Measurement Comparison # Bias Abs diff
Mean±SD or Median (IQR)

AHI4ARES/ODIOx2 ARES vs. WristOx2 310 0.7±6.1 2.5 (1.2, 5.2)

N1 vs. N2 ARES 130 0.6±9.9 3.0 (1.0, 6.0)

N1 vs. N2 WristOx2 130 0.7±8.8 2.5 (1.1, 5.6)

%time<90%O2Sat ARES vs. WristOx2 310 −7.0±15.4 1.9 (0.4, 7.2)

N1 vs. N2 ARES 130 0.9±5.1 0.6 (0.2, 2.9)

N1 vs. N2 WristOx2 130 0.7±15.2 1.4 (0.3, 6.8)

Awake baseline 02Sat* ARES vs. WristOx2 295 4.0±2.6 4.1±2.4

N1 vs. N2 ARES 130 −0.1±2.3 1.7±1.6

N1 vs. N2 WristOx2 125 −0.9±8.8 1.5±1.6

#
=Number of comparisons. N1: Night 1; N2=Night

*
O2 saturation during a period in the first 10 minutes of data recording. Stable O2 saturation level could not be reliably obtained from the 

WristOx2 at the beginning of the study on some nights.
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